Synthetic promoters for novel coexpression strategies and pathway engineering in yeasts

View all posters

anton glieder, Thomas Vogl

Austrian Centre of Industrial Biotechnology, Austria

New promoter sequences which drive the transcription of genes can be derived by mutagenesis of natural promoters or designed de novo by rational, semi-rational and evolutionary approaches. While synthetic promoters for protein expression in prokaryotic organisms can be well designed and constructed by consensus sequence strategies and oligo nucleotide synthesis, eukaryotic promoters are less well understood and most concepts employ natural core promoters where regulatory sequences are fused to improve the strength and regulatory properties of such promoters in eukaryotes. Starting with mutagenesis of the strong and tightly regulated natural AOX1 promoter of Pichia pastoris we have recently developed a library of promoters for protein expression in this methylotrophic yeast which differ in strength and regulation. Based on natural core promoters of P. pastoris and S. cerevisiae new short promoter sequences with related regulatory profiles but diversified sequences were developed. Recently we have also developed synthetic bidirectional promoters for novel coexpression strategies.