Automated bioparts characterisation for Synthetic Biology

View all posters

Christohper Hirst, Jonathon Smith, Geoff S Baldwin, Paul S Freemont, Richard I Kitney

Centre for Synthetic Biology and Innovation, United Kingdom

The forward engineering of biological systems from the ground up has long been a goal of Synthetic Biology. While the number of these parts has been rapidly increasing, the quality associated with these parts has not kept pace. Large numbers of parts characterised using high quality, standardised methods are required to fulfil this objective and allow the rapid advancement of developments within the field. To enable the rapid characterisation of BioParts a standard workflow designed to characterise promoters on an automated platform has been developed. The automated assay is separated into stages of subculturing, growth and measurement to improve data quality and ensure the accuracy of characterisation results. To characterise the BioParts, dynamic output data is collected from bacterial populations by a microplate reader and more sensitive single cell data is collected using automated flow cytometry and presented in relative (RPU) or absolute (GFP molecules per cell) unit formats. The workflow has been used to characterise both constitutive and inducible promoters; a subset of constitutive promoters has been tested under varying conditions to observe how these extra-cellular contexts would alter part functionality within the host and a few inducible promoters have been fully characterised to demonstrate the high detail output of the system. The developed workflow allows the rapid production of highly accurate part characterisation data which will be of particular use to system designers attempting to predict the outcome of their designs. While primarily designed for promoters, the workflow should be scalable to any expression based BioParts and enable the probing of how context factors alter the functional behaviour of those parts.